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1. Introduction 
Realistic facial expression animation requires a powerful “animator” (or graphics program) 
that can represent the kinds of variations in facial appearance that are both possible and 
likely to occur in a given context. If the goal is fully determined as in character animation for 
film, knowledge can be provided in the form of human higher-level descriptions. However, 
for generating facial expressions for interactive interfaces, such as animated avatars, correct 
expressions for a given context must be generated on the fly. A simple solution is to rely on 
a set of prototypical expressions or basis shapes that are linearly combined to create every 
facial expression in an animated sequence (Kleiser, 1989; Parke, 1972). An innovative 
algorithm for fitting basis shapes to images was proposed by Blanz and Vetter (1999) . The 
main problem with the basis shape approach is that the full range of appearance variation 
required for convincing expressive behavior is far beyond the capacity of what a small set of 
basis shapes can accommodate. Moreover, even if many expression components are used to 
create a repertoire of basis shapes (Joshi, Tien, Desbrun, & Pighin, 2007; Lewis, Matt, & 
Nickson, 2000), the interface may need to render different identities or mixtures of facial 
expressions not captured by the learned basis shapes. A representation of facial appearance 
for animation must be powerful enough to capture the right constraints for realistic 
expression generation yet flexible enough to accommodate different identities and 
behaviors. Besides the obvious utility of such a representation to animated facial interfaces, 
a good model of facial expression generation would be useful for computer vision tasks 
because the model’s representation would likely be much richer and more informative than 
the original pixel data. For example, inferring the model’s representation corresponding to a 
given image might even allow transferring an expression extracted from an image of a face 
onto a different character as illustrated by the method of expression cloning (Noh & 
Neumann, 2001). 
In this chapter we introduce a novel approach to learning to generate facial expressions that 
uses a deep belief net (Hinton, Osindero, & Teh, 2006). The model can easily accommodate 
different constraints on generation. We demonstrate this by restricting it to generate 
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expressions with a given identity and with elementary facial expressions such as “raised 
eyebrows.” The deep belief net is powerful enough to capture the large range of variations 
in expressive appearance in the real faces to which the net has been exposed. Furthermore, 
the net can be trained on large but sparsely labeled datasets using an unsupervised learning 
approach that employs an efficient contrastive form of Hebbian learning (Hinton, 2002). The 
unsupervised approach is advantageous because we have access to large corpuses of face 
images that are only sparsely labeled. Furthermore, since the human brain learns about faces 
through exposure in addition to explicit linguistic labeling, the unsupervised approach may 
lead to a better understanding of how the brain represents and processes faces for 
expression interpretation. It is unlikely that neural representations are learned by ignoring 
everything in the facial signal other than what correlates with occasional linguistic labels, 
because the labels do not provide enough information to organize a flexible and powerful 
representation of the face. The deep belief net approach to facial expression generation 
should be of interest to neuroscientists and psychologists concerned with facial expression 
representation in the brain because the multiple layers of representation that it uses are all 
learned from the data rather than being pre-specified. 

2. Strategies for facial expression generation 
A good criterion for determining the usefulness of a facial expression animation program is 
whether generation can be controlled easily. The challenge is finding a class of generative 
model that is powerful enough to generate realistic faces but simple enough to be learned 
from sparsely labeled data. Assume for a moment that we have access to a facial animation 
program with sensible controls, some face images, and a corresponding set of labeled data 
representing the controls the animation program would need to generate those images. For 
example, faces can be labeled using the Facial Action Coding System (FACS), which encodes 
expressions in terms of configurations of facial muscles and associated changes to the 
surface appearance (Ekman & Friesen, 1978). FACS is a kind of universal grammar for faces 
that describes the many different patterns of muscle actions that faces can express. FACS-
based face models have been used to control facial animation (e.g. Wojdel & Rothkrantz, 
2005). Currently, state of the art methods for realistic facial animation used in video games 
and feature films use  FACS to drive models derived from motion capture data (Parag, 
2006). However, this performance-driven approach to facial animation requires more 
information than images and labels, including motion capture technology, extensive 
calibration, and processes to clean data prior to modeling. This may be infeasible in most 
cases where we only have face images and associated high-level animation labels. With a 
sufficient number of FACS-labeled images, we could learn to control our animation program 
to do various tasks such as mimic face images by inferring the latent variables that control 
the generative model given an image and then generating a reconstruction from the model. 
However, learning the required nonlinear mapping from pixels to animation controls is 
likely to be a difficult problem requiring huge amounts of data and processing time. For 
instance, varying the intensity of a smile has highly nonlinear effects on pixel intensities. It is 
an even greater challenge to tailor the animation program to be flexible enough to 
accommodate arbitrary facial appearance. Rather than starting with an existing face model 
or using human animation knowledge to develop a complicated animation program, in this 
chapter we will learn to animate faces by training a type of general-purpose generative 
model on many examples of faces and associated high-level descriptors including FACS and 
identity labels. 
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A widely used technique for learning face structure from images is principal component 
analysis (PCA). PCA is a dimensionality reduction method that can be used to extract 
components from face images for use in face recognition (Turk & Pentland, 1991) and 
expression coding (Calder, Burton, Miller, Young, & Akamatsu, 2001). PCA is the optimal 
linear method for data compression when measured using squared error (provided we 
ignore the cost of coding the projections onto the components and we force the dimensions 
to be orthogonal). PCA, however, may ignore subtle, low-contrast cues in the interior of a 
face image, especially if the contrast between the face and the background is large, so that 
very accurate reconstruction of the boundary location is essential for minimizing squared 
error. A much more powerful method can be constructed using a twist on the standard PCA 
approach that factors faces into separate shape and texture sources. The active appearance 
model (AAM) is one such technique that uses information about the positions of facial 
feature landmarks (i.e. eyebrows, eyes, nose, mouth and facial contour) to warp face pixels 
to a standard reference frame (Cootes, Edwards, & Taylor, 1998). In this model, PCA is 
applied separately to the facial landmark coordinates and the shape-normalized pixels. The 
high-level controls are latent variables that linearly combine the feature coordinates and the 
texture map. To produce face images from a given vector of latent variables, texture and 
feature vectors are extracted and the shape-normalized textures are nonlinearly warped 
from the reference frame to the feature locations specified in the shape vector. This is a more 
sensible mapping from latent variables to pixels because faces can be modeled very 
accurately. The overall mapping is highly nonlinear even though variables controlling 
texture have linear effects on shape-normalized pixels, and variables controlling shape have 
linear effects on feature coordinates. 
While appearance modeling approaches including AAMs have been used for facial 
expression recognition and generation (Abboud & Davoine, 2005) their applicability is 
limited in a number of ways because they are restricted to hard-coded transformations of 
images into sources such as shape, texture or lighting. Furthermore, as with standard PCA, 
the generative process in this type of model is deterministic and relies on heuristics such as 
selecting a number of model parameters using percentage of variance cutoffs. A more 
fundamental problem is the major cost of hand-annotating facial features to create a shape 
model. Due to the reliance on manual annotation, it is difficult to extend the 
representational capacity of trained AAMs to model additional sources of variance such as 
new identities or expression types. Likewise, it is difficult to make use of unlabeled data 
during training because feature points are not provided. Finally, while appearance models 
can generate realistic facial expressions spanning the kinds of variations common in the 
training set, fitting the model to test data is a separate problem. In an AAM, computing the 
underlying representation of test faces involves a search scheme (Cootes et al., 1998). The 
search scheme requires an initial “guess” for the location of the face in the image and it uses 
an iterative refinement procedure for uncovering the underlying model representation that 
can often fail if the guess is not already almost correct. 
Another strategy is to treat facial expression generation as an unsupervised density 
estimation problem without the linear restrictions of standard PCA. If we have a large 
source of data, we can use it to learn a model of faces even if most of the images are not 
labeled; however, we need a good objective for adjusting model parameters. The key 
assumption is that there is rich structure in face images that can be uncovered without 
requiring labeled training data. One objective for unsupervised learning is optimal 
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reconstruction from a reduced code space. PCA is a linear example of this type of 
unsupervised approach. It learns codes for face images by finding a subspace of a particular 
dimensionality that minimizes squared reconstruction error. However, beyond the problems 
with PCA and the associated appearance model techniques mentioned above, squared 
reconstruction error is not always a perceptually meaningful measure. For instance, two 
different views of the same person are perceptually more similar than two different people 
in the same view even though measuring squared error of the pixels would suggest the 
opposite (Prince & Elder, 2005). Thus, although minimal reconstruction error may be an 
obvious objective for unsupervised learning of facial structure, it may not always be the 
most useful. This is especially true if our goal is to generate plausible expressions for a given 
context rather than to “mimic” expressions. Moreover, if the purpose is not to compress 
data, but to develop a good animation model, our objective should be to learn good 
“causes” for faces that lead to sensible generation of face images. If we have a good model 
for how to generate face images, those causes can be used for other tasks such as mapping 
image causes to high-level labels or driving an animation program. 
A recent breakthrough in machine learning makes it relatively easy to learn complex, 
probabilistic, nonlinear generative models of faces using deep belief nets (Bengio, Lamblin, 
Popovici, & Larochelle, 2007; Hinton et al., 2006). A deep belief net (DBN) is a generative 
model that uses multiple layers of feature-detecting neurons. The net learns to represent 
plausible configurations of features (Hinton, 2007b). For example, a DBN could model the 
useful property of faces that the eyes are always situated above the nose. Given reasonable 
training data, the net would be highly surprised by a new face in which all the features were 
face-like but the eyes were below the nose. DBNs have been used successfully to learn 
generative models of handwritten digits (Hinton & Salakhutdinov, 2006), of natural image 
patches (Osindero & Hinton, 2008), and of millions of small color images (Torralba, Fergus, 
& Weiss, 2008). A logical extension is to apply DBNs to modeling facial expressions, thereby 
demonstrating the wide applicability of the approach to learning useful structure from 
complicated, high-dimensional data. 

3. Using labels to control the generative model 
Within the context of affective computing, it is important to be able to control a face 
animation program to output particular expressions, identities, or other domain specific 
attributes. However, prototypical examples of specific categories like happy, sad, or angry 
do not capture the full repertoire of expressive behaviors important for realistic interaction. 
In fact, thousands of distinct facial expressions have been catalogued (J. F. Cohn & Ekman, 
2005). In our generative approach to expression modeling, we will learn a joint model of 
images, FACS labels, and identities. Once it has been learned, this model can generate an 
image with a pre-specified blend of identities and any desired combination of FACS labels. 
A key facet of our approach is the use of high-level descriptions, including identity and 
expressive facial action labels that provide rich information to usefully constrain the 
underlying representations used for generating image data. 
Labeling facial expressions using FACS consists of describing expressions as constellations 
of discrete muscle configurations known as action units (AUs) that cause the face to deform 
in specific ways. While FACS can code muscle configurations that people commonly 
recognize as emotions such as anger or fear (Ekman & Rosenberg, 1997), it describes 
underlying anatomy rather than expression categories per se. This extends its usefulness in 
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tasks such as fine-grained detection of micromomentary expressions (subtle expressions 
appearing for mere microseconds) (Ekman & Rosenberg, 1997), detection of facial markers 
of deceit (Frank & Ekman, 1997), and characterization of spontaneous emotional behavior 
(Schmidt, Ambadar, Cohn, & Reed, 2006). Although FACS is a popular coding system, 
human-based coding of AUs is a labor intensive process requiring significant expertise, 
especially when applied to tasks such as labeling huge image datasets or sequences of video 
frames. Accordingly, developing an automated method for FACS labeling is an important 
challenge for computer vision and machine learning. Existing automated methods for FACS 
labeling rely on pre-processing expression data using expert knowledge of facial features (J. 
Cohn, Zlochower, Lien, & Kanade, 1999), or supervised feature selection methods (M.S. 
Bartlett et al., 2006). One obstacle to high quality automatic FACS labeling is that only a 
small number of datasets with coded AUs are available publicly; yet there exist many 
images of faces that could be used to develop an automated model if there was a sensible 
way to make use of this additional unlabeled data. By using a generative approach to 
expression modeling, we can learn useful image structure from huge numbers of faces 
without the need for many labeled examples. This approach enables us to learn associations 
between FACS labels and image structure, but is not limited only to these associations. This 
is important because FACS labels alone do not code additional attributes for realistic 
animation such as identity characteristics or fine surface texture changes. 
Although faces are complex objects with often subtle differences in appearance, deep belief 
nets can be applied to learn a representation of face images that is flexible enough for 
animating as well as visually interpreting faces. State-of-the-art discriminative performance 
was recently achieved using DBNs as a pretraining method for handwritten digit 
recognition (Hinton et al., 2006) and for determining face orientation from images 
(Salakhutdinov & Hinton, 2008). In this chapter we apply an analogous method to learning a 
model for facial expressions. The DBN approach is capable of generating realistic 
expressions that capture the structure of expressions to which it is exposed during training, 
and can associate the high-level features it extracts from images with both identity and 
FACS labels. 

4. Learning in deep belief nets 
Images composed of binary pixels can be modeled by using a “Restricted Boltzmann 
Machine” (RBM) that uses a layer of binary feature detectors to model the higher-order 
correlations between pixels. If there are no direct interactions between the feature detectors 
and no direct interactions between the pixels, there is a simple and efficient way to learn a 
good set of feature detectors from a set of training images (Hinton, 2002). We start with zero 
weights on the symmetric connections between each pixel i and each feature detector j. Then 
we repeatedly update each weight, wij, using the difference between two measured, 
pairwise correlations 

 ( )reconjidatajiij ssssw ><−><=Δ ε  (1) 

where ε is a learning rate, <sisj>data is the frequency with which pixel i and feature detector j 
are on together when the feature detectors are being driven by images from the training set 
and <sisj>recon is the corresponding frequency when the feature detectors are being driven by 
reconstructed images. A similar learning rule can be used for the biases. 
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Given a training image, we set the binary state, sj, of each feature detector to be 1 with 
probability 
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where bj is the bias of feature j and si is the binary state of pixel i. Once binary states have 
been chosen for the hidden units we produce a “reconstruction” of the training image by 
setting the state of each pixel to be 1 with probability 
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The learned weights and biases of the features implicitly define a probability distribution 
over all possible binary images. Sampling from this distribution is difficult, but it can be 
done by using “alternating Gibbs sampling”. This starts with a random image and then 
alternates between updating all of the features in parallel using Eq. 2 and updating all of the 
pixels in parallel using Eq. 3. After Gibbs sampling for sufficiently long, the net reaches 
“thermal equilibrium”. The states of pixels and features detectors still change, but the 
probability of finding the system in any particular binary configuration does not. 
A single layer of binary features is not the best way to model the structure in a set of images. 
After learning the first layer of feature detectors, a second layer can be learned in just the 
same way by treating the existing feature detectors, when they are being driven by training 
images, as if they were data (Hinton, 2007a). To reduce noise in the learning signal, the 
binary states of feature detectors (or pixels) in the “data” layer are replaced by their real-
valued probabilities of activation when learning the next layer of feature detectors, but the 
new feature detectors have binary states to limit the amount of information they can convey. 
This greedy, layer-by-layer learning can be repeated as many times as desired. Provided the 
number of feature detectors does not decrease and their weights are initialized correctly, 
adding an extra layer is guaranteed to raise a lower bound on the log probability of the 
training data (Hinton et al., 2006). So after learning several layers there is good reason to 
believe that the feature detectors will have captured many of the statistical regularities in the 
set of training images and will constitute a good generative model of the training data. 
After learning a deep belief net, perception of a new image is very fast because it only 
involves a feedforward pass through the multiple layers. Generation from the multilayer 
model is slower. At the end of the layer-by-layer training, the weight between any two units 
in adjacent layers is the same in both directions and we can view the result of training three 
hidden layers as a set of three different RBM's whose only interaction is that the data for the 
higher RBM's is provided by the feature activations of the lower RBM's. It is possible, 
however, to take a very different view of exactly the same system (Hinton et al., 2006). We 
can view it as a single generative model that generates data by first letting the top-level 
RBM settle to thermal equilibrium using alternating Gibbs sampling (which may take a very 
long time), and then performing a single top-down pass to convert the binary feature 
activations in the penultimate layer into an image. In the top-down, generative direction, the 
weights between the lower layers form part of the overall generative model, but in the 
bottom-up, recognition direction they are not part of the model. They are merely an efficient 
way of inferring what hidden states probably caused the observed image. 
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5. A deep belief net for facial expressions 
5.1 Facial expression dataset 
In order to learn a generative model from a large and varied corpus of faces, we combined 
datasets that capture a significant degree of expression variation. Spontaneous expressions 
were collected during interviews in which participants were either deceptive or truthful (M. 
S. Bartlett et al., 2005). Additionally, a mixture of spontaneous and posed facial actions were 
collected from subjects in the MMI database (Pantic & Rothcrantz, 2000). Finally, posed 
facial actions were collected from the Cohn-Kanade FACS database (Kanade, Cohn, & Tian, 
2000), the Ekman and Hager directed facial actions set (M.S. Bartlett, Hager, Ekman, & 
Sejnowski, 1999), and the Pictures of Facial Affect database (Ekman & Friesen, 1976). 
Identity labels accompany almost all faces. A subset of the data was coded by expert human 
raters, providing FACS labels for training the model to associate AUs with image features.  

5.2 Preprocessing 
We extracted over 100,000 face patches from the combined datasets using an automatic face 
detector (I. Fasel et al., 2004), which extends a previous approach (Viola & Jones, 2001). 
Modifications include employing a generative model framework to explain the image in 
terms of face and non-face regions, Gentleboost instead of Adaboost for feature selection, 
estimated eye and mouth corner feature detection, and a cascading decision procedure (I. R. 
Fasel, Fortenberry, & Movellan, 2005). Face patches were resized and cropped to 24x24 
pixels. We then randomly selected 30,000 unlabeled faces and 3,473 labeled faces from the 
pool of detected face patches (see Table 1 below). The 8 AUs chosen for this experiment are 
common facial actions representing changes to the top and bottom half of the face (see  

Figure 4 below). The AUs representing the top half of the face are AU 1 and AU 2, which 
code inner, and outer eyebrow raises, respectively, AU 4, which codes brow lowering, and 
AU 5, which codes upper eyelid raise. The AUs representing the bottom half of the face are 
AU 10, which codes for upper lip raise, AU 12, which codes for lip corner raise, AU 14, 
which codes for cheek dimpling, and AU 20, which codes for horizontal mouth stretching. 
 

  FACS Action Units (AUs) 
Faces ID 1 2 4 5 10 12 14 20 -- 
3,473 151 0.28 0.22 0.15 0.08 0.08 0.18 0.07 0.05 0.35 
27,863 205 -- -- -- -- -- -- -- -- -- 

Table 1. Faces, unique identities, and AU labels in the dataset. The first row describes faces 
with labeled action units, including the number of unique faces, and identities, and the 
proportion of labeled faces displaying a particular AU. The second row indicates the 
number of unique faces and identities in the larger set of faces with missing AU labels. 

The extracted face images exhibited a large range of lighting conditions because of the 
differences in lighting control across datasets. To avoid learning lighting features at the 
expense of face details, pixel brightness was first normalized within and then across faces. 
First, all pixel values in a given face image were standardized across all pixels (i.e. separate 
linear transformations for each face). Then, each pixel value was normalized across faces to 
unit variance (i.e., each pixel intensity was divided by a separate constant). Finally, pixels 
that were beyond ±3 standard deviations from the average pixel brightness were truncated, 
and the images were rescaled to range between [0-255]. These preprocessing steps produced 
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symmetric brightness histograms that were roughly normally distributed with minimal 
preprocessing artifacts. 
To facilitate training the first-level RBM with binary visible units, which are easiest to train, 
a heuristic procedure was used to convert brightness normalized face images into “soft” 
binary images. The method involved: (1) stretching the brightness-normalized face images 
using a hand-tuned logistic function resulting in contrast-enhanced pixel values, 
maintaining a range between [0-255], and (2) multiplying the pixels by 2 and truncating 
values exceeding 255. The ensuing images had dark edge features and bright regions 
elsewhere and retained perceptually important identity and expression attributes (see 
Figure 1a). 
 

 
Figure 1. (a) Randomly selected soft binary training images. (b) RBM reconstructions 
(probabilities are shown instead of binary samples to produce smoother images). 

To see how much critical information about expression is lost by the soft binarization 
procedure, two different neural nets were trained with backpropagation to discriminate 
FACS labels from real-valued versus soft binary images. The performance was slightly 
worse for the net trained using soft binary images (see Appendix). 

5.3 Net architecture 
Figure 2 depicts the deep belief net used to model the joint distribution of face images, 
identities, and FACS labels. In this model, 576 soft binarized pixel inputs are connected to a 
hidden layer of 500 logistic units, which is connected to a second layer of 500 hidden units. 
The penultimate hidden layer is then concatenated with identity and FACS label units, and 
the resulting vector serves as the visible layer of a top-level RBM with 1000 logistic hidden 
units. During training, each ascending pair of layers in the deep belief net is trained as an 
RBM, using the hidden activities computed from the previous RBM below as visible units 
for training the next RBM. After greedy layer-wise training, the complete net forms a hybrid 
model consisting of directed connections between lower layers and an undirected 
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associative memory at the top (Hinton et al., 2006). This top-level associative memory binds 
features and labels, and can thus be sampled by letting the RBM settle on likely 
configurations of features and label units. To generate from the net, the FACS AU label units 
in the penultimate layer can be clamped to particular values, and the associative memory 
can be sampled to find features that satisfy the label constraints, or the features can be 
clamped to values computed from an up-pass starting from an image, and the associative 
memory will fill in FACS labels. Given a particular configuration of features in the 
penultimate layer, the generative directed connections (pointing from higher to lower 
layers) convert the deep layers of feature activities into observed pixel face images. 
 

 
Figure 2. Architecture for deep belief net trained to generate facial expressions, identity 
labels, and FACS labels. 

5.4 Greedy layer-wise training of the deep belief net 
For training each RBM, the biases and weights connecting visible to hidden units were 
initialized to randomly sampled values from a normal distribution (μ=0, σ =.03). Training 
consisted of multiple passes through a full set of minibatches of 100 visible vectors with the 
weight being updated after each minibatch. To encourage the hidden layers to develop 
sparse representations, a penalty term was added to the weight updates for the first and 
second-level RBMs to pressure features to turn on 20% of the time. To reduce over-fitting, a 
weight decay of .00005 was used. 
The first-level RBM connecting pixel visible units to 500 hidden units was trained for 200 
epochs through the training data. A learning rate of .01 was used for the visible-to-hidden 
connections and .05 was used to update the weights on the visible and hidden biases. Figure 
3 below shows receptive fields of some of the features learned by the first-level RBM. Since 
all the faces in the dataset were roughly aligned and scaled based on a consistent face and 
eye detection scheme, the positions of local features learned by the RBM tended to 
correspond to recognizable face parts, often characterizing local receptive fields comprising 
the eyebrows, eyes, cheeks, nose, or mouth. 
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Figure 3. Receptive fields of some features learned by the first-level RBM. White indicates a 
positive weight to a pixel and black indicates a negative weight. Many features contain 
moderately to highly local receptive fields, indicating componential structure useful for 
representing distinct features and edges. Other features are more global. 

Even though the first-level RBM was trained completely unsupervised, it learned useful 
structure in its features relating to different FACS AU label units.  

Figure 4 shows a subset of features that correlate the most with different AUs. One 
interesting set of features includes salient positive weights to the whites of the eyes and 
negative weights to the pupils for detecting AU 5 (which codes for raised upper eyelids). 
These detailed features were likely learned because the automatic face detector aligns face 
patches to have roughly the same eye positions. Also evident from  

Figure 4 is that some action units correlate with the same features because the changes in 
facial anatomy overlap. For instance, the same wide-eyed feature is highly correlated with 
AUs 1, 2, and 4, which code for raised inner brow, raised outer brow, and raised upper 
eyelid, respectively. Similarly, AUs 10 and 12, which code upper lip raise and upturned 
mouth corners, both correlate negatively with bright regions lateral to the mouth corners. A 
raised upper lip is a typical feature of disgust faces while upturned lip corners relate to 



Generating Facial Expressions with Deep Belief Nets 

 

431 

smiling; both of these actions may occur along with activation of the Zygomaticus muscle, 
serving to raise the cheeks, which leaves darker creased regions below. 
 

 
 

Figure 4. Unsupervised features (rows) that are highly correlated with particular action 
units (columns). The first 3 rows show positively correlated features with a particular AU, 
and the bottom 3 rows show negatively correlated features. 

The visible units of the second-level RBM were initialized during training to the hidden 
probabilities computed by the first-level RBM after training. The second-level RBM was also 
trained for 200 epochs through the training data using the same learning rates and sparsity 
targets as were used to train the first-level RBM. 

5.5 Learning the joint distribution of FACS labels and penultimate features 
After training the second-level RBM, its feature activities were concatenated with discrete 
label units representing both identity and AU labels. The combined vector then became the 
visible units of the top-level RBM. Since a face image can only be associated with a single 
identity, a 1-of-K “softmax” coding scheme was used to represent the identities. Once binary 
states have been sampled for the hidden units, we generate identity labels by setting the 
state of each identity element to be 1 with probability 
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On the other hand, more than one FACS unit can be active for a face. Thus, the AU label 
vector comprises independent binary units for each of the 8 AUs. AU labels and feature 
activities are both generated independently for each unit using Eq. 3. 
The third-level RBM was trained using N-step contrastive divergence (Carreira-Perpignan & 
Hinton, 2005) in 100 epoch sets using CD-3, CD-5, CD-7, CD-9, and CD-10 with the learning 
rate annealed in step increments from .001 to .0005 across the 500 epochs, and a weight 
decay of .00005. Training continued at CD-10 for a total of 4000 epochs. 

5.6 Expression generation 
After training, the deep belief network was tested as a face animation program by 
generating faces given different configurations of identity and AU labels. To generate from 
the DBN, one or more identity and/or AU labels are first clamped to particular values 
(where 0 = “off” and 1 = “on”). Next, the remaining visible units of the top-level RBM are 
sampled randomly according to their bias terms. This initializes the visible data vector for 
the top-level RBM to a reasonable unbiased starting point. Next, alternating Gibbs sampling 
is run for 1,000 steps, after which it is assumed the network has settled close to its 
equilibrium distribution given the clamped labels. Then, a single top-down pass converts 
the binary feature activations in the penultimate layer into an image consistent with the 
sample from the top-level RBM. 
An innovative facial animation program would allow a user to specify some diffuse 
attributes, such as facial actions and/or identities, without requiring very specific controls. 
In other words, one should be able to specify a high-level description to the animation 
program without specifying every detailed feature contributing to that composition. The 
trained DBN is capable of this type of high-level control over face generation. Figure 5 
below shows examples of the DBN generating faces after specifying a particular facial action 
unit. Although the network is capable of highly specific combinations of facial actions, such 
as all AUs off except for raised eyebrows, here we allow the net to determine its own 
combinations of facial actions given a single clamped unit. Thus, for example, when AU 1 is 
on (inner brow raise), the network often fills in other facial actions in addition to AU 1 such 
as AU 2 (outer brow raise), AU 4 (lowered brow), and AU 5 (raised eye lids). Note that AUs 
1 and 4 can co-exist because there are multiple muscles involved in brow movement. The 
network’s ability to generate combinations of AUs is evident in many other instances in 
Figure 5, such as the combination of AU 20 (horizontal lip stretcher) with AU 12 (raised lip 
corners), which is consistent with grinning, and AU 20 with AU 1 (inner brow raise), AU 2 
(outer brow raise), and AU 5 (raised upper eye lid) which is characteristic of fear. 
In addition to generating faces by specifying particular facial actions, the DBN can generate 
faces conforming to particular identities. Figure 6 below shows examples of the DBN 
generating faces after specifying a particular identity label. Since identity labels are 
“softmax” units, the network has learned during training not to blend identities. This is 
evident in Figure 6, where most faces generated for a particular identity look like that 
identity. Since the DBN is capable of settling on different combinations of AUs given a 
particular identity label, the generated faces vary in expression, sometimes exhibiting 
multiple AUs. However, since not all identities in the training set exhibited all facial actions, 
some expressions occur more often for some identities than others. 
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Figure 5. Face images sampled from the conditional distribution of features and AUs given 
an AU label. Each row shows 7 results after clamping a particular AU label to “on” and 
running alternating Gibbs sampling at the top-level RBM for 1000 iterations, and generating 
an image via a directed down-pass through the network, resulting in pixel probabilities 
observed at the visible image layer. Above each face image is the associated AU vector that 
the network settled on, indicating from left to right AUs 1, 2, 4, 5, 10, 12, 14, and 20. 
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Figure 6. Face images sampled from the conditional distribution of features and AUs given 
an identity label. Each row corresponds to faces generated with a particular identity label 
clamped on. The first column shows example faces from the training set representative of 
the clamped identity for the corresponding row. The samples vary in expression in ways 
representative of the expressions posed by that identity in the training set. 

The DBN is also capable of generating a face given both a set of AUs and a specific identity. 
This is an important ability for an animation program to possess because often the intent is 
to animate the expressions of a particular individual. Figure 8 below shows examples of the 
DBN generating faces after clamping specific identity and AU labels. For example, the first 
row of Figure 8 shows 5 different examples of the same identity exhibiting AU 10 (upper lip 
raise), which is a facial action often associated with disgust. Sometimes the network also 
filled in other AUs such as AU 12, which can occur together with AU 10 during happiness. 
Note that the middle face in the first row appears to change identity even though the 
identity label is clamped. Since the DBN is stochastic, this will occasionally happen. The 
second row of Figure 8 demonstrates both a consistent identity and the likely co-occurrence 
of AU 1 (inner brow raise) with AU 2 (outer brow raise), and AU 5 (upper eye lid raise), 
which are combinations that often occur in conjunction with fear and surprise.  
Finally, we demonstrate the DBN has the capacity to generate faces that are restricted to a 
subset of more than one identity. Occasionally in this case the network will generate blends 
of identities since the feature representation contains many local features consistent with 
both identities. Figure 7 below shows examples of the DBN generating faces after specifying 
two different identity labels with equal probability. These examples demonstrate that the 
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DBN is capable of generalizing beyond the training examples to create novel blends of 
identities that vary in expression. 
 

 
 

Figure 8. Face images sampled from the conditional distribution of features and AUs given 
both an identity label and an AU label. Each row corresponds to faces generated with both a 
particular identity label and an AU label clamped on. Row 1 shows that the network settles 
on faces congruent with a consistent identity label (corresponding to the face in column 1) 
that all exhibit variations on the upper lip raise (AU 10). Similarly, row 2 shows different 
variations on the inner brow raise (AU 1) consistent with the corresponding given identity. 

 

 
 

Figure 8. Face images sampled from the conditional distribution of features and AUs given a 
blend of two identity labels clamped on. Each row shows sample faces consistent with the 
identity labels for the two left-most faces in that row. Some faces are more consistent in 
visual appearance with one of the identities, while other faces seem to settle on blends of the 
two identities, indicating the identities contain compatible features. 

6. Conclusion 
In this chapter we showed that it is possible to train a deep belief net with multiple layers of 
features to function as an animation system capable of converting high-level descriptions of 
facial attributes into realistic face images. By specifying particular labels to the DBN, we 
were able to generate realistic faces displaying specific identities and facial actions. In 
addition, the DBN could generalize from the associations it learned during training to 
synthesize novel combinations of identities and facial actions. Thus, like the human brain, 
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the DBN can remember faces it has seen during training, can associate faces with particular 
identities, and can even “imagine” faces it has never seen before by blending identities 
and/or facial actions. By sampling from the DBN, we demonstrated that it is possible to 
investigate how a neural net represents faces and associates them with high-level 
descriptions. Samples that the DBN generates represent beliefs it has about faces. In 
particular, the top-level RBM acts as a constraint satisfaction network, finding sets of image 
features that the network considers likely to be associated with a given set of identities and 
action units. A question for future research is the extent to which the representations that 
the DBN learns resemble the neural representations used by humans. For instance, humans 
often confuse certain facial expressions like fear and surprise, presumably because these 
expressions share underlying muscle configurations and are thus visually similar (Dailey, 
Cottrell, Padgett, & Adolphs, 2002; Susskind, Littlewort, Bartlett, Movellan, & Anderson, 
2007). Likewise, humans may confuse some identities more than others due to ways in 
which the faces are perceptually similar. Does the DBN capture human-like perceptual 
similarity? In order to answer this question we would need to measure how similarly the 
network represents different faces. One way this could be done is by correlating average 
feature activities in the DBN to different faces and comparing the degree of similarity 
between faces to human judgments of similarity.  
Our DBN results demonstrate that different types of facial attributes can be represented by 
the same distributed set of image features, suggesting in particular that identity and 
expression are not entirely independent facial attributes. The current study did not attempt 
to investigate the interdependence of identity and expression directly, but the ability of the 
network to associate identities and facial actions with facial appearance suggests these 
different attributes can make use of the same distributed neural representation. One way to 
examine the relative interdependence of expression and identity in the network is to 
examine whether some facial actions are more likely to be generated given one identity label 
rather than another, which would indicate that expression depends on identity. The DBN 
can model the notion that different people smile in different ways, expressing the same 
facial action with different constellations of visual features. Some evidence that the brain 
encodes facial expression in an identity-specific manner comes from behavioral studies 
examining high-level facial expression adaptation to different identities (Ellamil, Susskind, 
& Anderson, in press; Fox & Barton, 2007).  
The deep belief network approach demonstrates that given a large enough set of training 
data, a neural network can learn sensible representations of face images directly from image 
pixels, without requiring expert feature selection methods to pre-process the image. 
Although in this approach the DBN was trained to generate facial expressions given high-
level identity and FACS AU labels, the representation of faces that it learned may also be 
useful for recognizing these and other expressive attributes when presented with a face 
image. In fact, after learning multiple layers of image features using RBMs, the DBN can be 
further fine-tuned for discriminating high-level labels from images using the 
backpropagation algorithm (Hinton & Salakhutdinov, 2006). However, the discriminative 
network would lose its capacity to generate faces. More appropriately for the purposes of 
facial animation, the DBN can be fine-tuned to recognize high-level descriptions of faces 
while maintaining its generative capacity to animate facial expressions using generative 
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fine-tuning methods such as a contrastive version of the wake-sleep algorithm (Hinton et al., 
2006). The authors show that this approach works well for generating and recognizing 
hand-written digits. Although better generation and recognition performance might be 
achieved with fine-tuning, we have demonstrated that a relatively simple unsupervised 
learning algorithm can develop a powerful internal representation of faces.  
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 Appendix 
In a control experiment to ensure no critical loss of information, we compared two different 
classifiers trained with backpropagation to predict FACS labels, using faces preprocessed 
with and without the soft binarization step. Results are shown below in  

Table 2 for nets trained with 100 hidden units1. Area under the ROC curve was computed 
separately as an  
 

Net Area under ROC 

Architecture AU1 AU2 AU3 AU4 AU5 AU6 AU7 AU8 

MLP100 0.78 0.74 0.76 0.90 0.78 0.87 0.75 0.77 

BINMLP100 0.77 0.74 0.76 0.88 0.76 0.87 0.75 0.75 
 

Table 2. FACS classification results for feedforward nets trained with backpropagation, with 
and without the soft binarization preprocessing step (top and bottom row, respectively). 
index of classification accuracy for each FACS label. The net trained with soft binarized 
inputs (BINMLP100) achieved comparable results to the net trained without this extra 

                                                 
1 Separate nets were tested with 50-500 hidden units. The 100 hidden unit nets were optimal 
as assessed by error on the labeled validation cases. 
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preprocessing step (MLP100). In addition, Figure 1b shows reconstructions from a trained 
RBM showing that treating the set of soft binarized pixel intensities as Bernoulli 
probabilities is appropriate for capturing essential identity and expression features in the 
training images, even though the RBM does not optimize image reconstruction. These 
results indicate that the soft binarization step does not eliminate diagnostic expression 
features, which validates the use of binary visible units to train the first-level RBM. 
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